User Tools


Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
cs:hydrophones:start [2016/12/10 19:43]
Ryan Summers
cs:hydrophones:start [2019/02/21 19:50] (current)
Christofer Freeberg [Testing Procedure]
Line 1: Line 1:
 ====== Hydrophones ====== ====== Hydrophones ======
-<WRAP info> +Our hydrophones are a powerful tool for figuring out where we are in the water. Using 4 hydrophoneswe can calculated our bearing ​to the pinger. For details, see [[cs:​hydrophones:​pinger_bearing:start|Pinger Bearing]].
-Before reading this pagemake sure to check out the **Problem Setup** section of [[ee:​hydrophones:​trilateration:start|this page]]. +
-</​WRAP>​+
  
-This page is a summary ​of how we use the hydrophones to figure out our position.+==== Testing Procedure ==== 
 +==Materials:​== 
 + * 1 tub of water 
 + * 1 pinger 
 + * Hydrophone Test Rig
  
-Note that +==Test Rig:== 
- + * Pinger at one end of tub 
- + * Hydrophones ​at other end of tub 
-The primary results from [[ee:​hydrophones:​trilateration:​start|this derivation]] are equations $\ref{eq:​xyz}$ and $\ref{eq:​p0_initial}$. + * If lots of noise in readings observed, can place towels around tub
-$$ +
-\begin{equation} \label{eq:​xyz}  +
-\frac{\Delta x (2p_0 - \Delta x) + \delta^2}{2 \delta} \\ +
-\frac{\Delta y (2p_0 - \Delta y) + \epsilon^2}{2 \epsilon} \\ +
-z = \frac{\Delta z (2p_0 - \Delta z) + \zeta^2}{2 \zeta}  +
-\end{equation}$$ +
- +
-$$ \begin{equation}\label{eq:p0_initial} +
-p_0^2(a_x + a_y + a_z - 1) + p_0(b_x + b_y + b_z) + (c_x+c_y+c_z) +
-\end{equation} +
-$$ +
- +
-With variable definitions given by $\ref{eq:​variable_definitions}$. +
- +
-$$ \begin{equation} \label{eq:​variable_definitions} +
-a_x \left(\frac{\Delta x}{\delta}\right)^2 \qquad +
-b_x = \frac{\Delta x}{\delta^2}(\delta^2 +\Delta x^2) \qquad +
-c_x = \left(\frac{\Delta x^2 - \delta^2}{2 \delta}\right)^2 \\ +
- +
- +
-a_y = \left(\frac{\Delta y}{\epsilon}\right)^2 \qquad  +
-b_y = \frac{\Delta y}{\epsilon^2}(\epsilon^2 +\Delta y^2) \qquad +
-c_y = \left(\frac{\Delta y^2 - \epsilon^2}{2 \epsilon}\right)^2 \\ +
- +
-a_z = \left(\frac{\Delta z}{\zeta}\right)^2 \qquad  +
-b_z = \frac{\Delta z}{\zeta^2}(\zeta^2 +\Delta z^2) \qquad +
-c_z = \left(\frac{\Delta z^2 - \zeta^2}{2 \zeta}\right)^2 +
-\end{equation} +
-$$ +
- +
-$h_0$ is at location $(0,0,0)$ \\ +
-$h_x$ is at location $(\delta,​0,​0)$ \\ +
-$h_y$ is at location $(0,​\epsilon,​0)$ \\ +
-$h_z$ is at location $(0,​0,​\zeta)$ \\ +
- +
-Let us simplify eq. $\ref{eq:​p0_initial}$ using the following substitution:​ +
-$$ +
-a = (a_x + a_y + a_z - 1) \\ +
-b = (b_x + b_y + b_z) \\ +
-c = (c_x+c_y+c_z) +
-$$ +
- +
-This gives us eq. $\ref{eq:​p0_initial_simple}$,​ which is an ordinary quadratic equation. +
-$$ \begin{equation}\label{eq:​p0_initial_simple} +
-0 = p_0^2 a + p_0 b + c +
-\end{equation} +
-$$ +
- +
-Applying the quadratic formula to eq. $\ref{eq:​p0_initial_simple}$we can solve for $p_0$. +
- +
-$$ \begin{equation}\label{eq:​p0_solved} +
-p_0 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} +
-\end{equation} +
-$$ +
- +
-This will give us two possible solutions for $p_0$. We can combine this result with eq. $\ref{eq:​xyz}$ to solve for $x$, $y$, and $z$. +
- +
-====== Reversing the Problem ====== +
-Here we describe how the simulator takes the position of the sub and calculates fake hydrophone timing data. <WRAP todo> +
-Need figure this part out! +
-</​WRAP>​+
  
 +==Procedure:​==
 + - ssh into the sub
 + - roslaunch robosub cobalt.launch
 + - rosrun robosub pinger_bearing
 + - rostopic echo /​hydrophones/​bearing
 + - Manipulate hydrophones & Observe bearing readings