User Tools


Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
cs:hydrophones:trilateration_setup:start [2016/12/14 00:49]
Brian Moore
cs:hydrophones:trilateration_setup:start [2017/09/12 12:44] (current)
James Irwin [Trilateration Setup]
Line 1: Line 1:
-====== Trilateration ======+====== Trilateration ​Setup======
 Below is the math for calculating the location of the pinger in the water relative to our submarine. Because we know the absolute location of the pinger in the pool, we can calculate the sub's position in the pool. Below is the math for calculating the location of the pinger in the water relative to our submarine. Because we know the absolute location of the pinger in the pool, we can calculate the sub's position in the pool.
  
- +{{:cs:​hydrophones:​trilateration_setup:​trilateration_derivation.pdf|Original derivation}} by Brian Moore.
-{{:ee:​hydrophones:​trilateration:​trilateration_derivation.pdf | Original derivation}} by Brian Moore.+
  
 ===== Problem Setup ===== ===== Problem Setup =====
Line 33: Line 32:
 \Delta z = \Delta t_z * c_s \\ \Delta z = \Delta t_z * c_s \\
 $$ $$
-In other words, $h_x$ is $\Delta x$ meters closer the pinger than $h_0$, and $h_0$ is $p_0$ meters from the pinger.+In other words, $h_x$ is $\Delta x$ meters closer ​to the pinger than $h_0$, and $h_0$ is $p_0$ meters from the pinger.
  
 The final calculations for $x$, $y$, and $z$ will be in terms of $\Delta x$, $\Delta y$, and $\Delta z$ The final calculations for $x$, $y$, and $z$ will be in terms of $\Delta x$, $\Delta y$, and $\Delta z$