2025/07/14 18:59 1/2 Bootloader

Bootloader

This page contains information about how the bootloader functions with the microcontroller
bootloader interface to allow for field-programming of the microcontrollers through UART.

Framing of Transmissions

All UART communications are sent through a framed transmission protocol. A frame consists of three
distinct elements. A frame has a HEADER byte, called SOT (start of transmission) and ends with an
EOT byte (end of transmission). All data in between consists of a single hex file record (hex file line) to
be used for programming the microcontroller. The main purpose of the bootloader is to transmit each
record from the hex file to the microcontroller for programming and interpretation. Currently, only a
single record is transmitted within each frame. This could be modified to allow for multiple records in
a frame to increase speed of bootloading, however it additionally complicates the program. Because
the EOT and SOT bytes may not be unique, an additional byte is used to distinguish them. A DLE byte
(delimiter byte) is used to indicate whether or not a byte is infact the SOT or EOT bytes. A DLE is
placed before any bytes within the frame that are NOT the DLE, SOT, or EOT bytes. This way, it acts
as a form of escape character. If the serial line sees the DLE and then an SOT byte, it knows that the
SOT byte is actually just generic data for programming. To avoid errors, if a DLE is to be sent as data,
it will also be preceeded by another DLE. This way, the serial line will know to interpret the DLE as raw
data.

Programming with the Bootloader

The bootloader is quite easy to use as a class for programming. First, instantiate a bootlaoder object
with the appropriate HEX file path, serial port path, and baud rate (Note: If not using a custom
bootloader, use a baud rate of 115200, default). The Bootloader class provides a number of functions
to interract with the microcontrollers memory. A call to the LoadHex () function will initialize the hex
file for transmission - this does not need to be done, as the file will be loaded automatically when the
program function is called. Therefore, only a small number of functions are needed from the
Bootloader class. These include erase(), program(), and start(). These functions are quite
explanatory, but they will be discussed anyways. The erase function will erase all memory pages
within the microcontroller that are not in use by the bootloader. The erase function must be called
when loading a new program into the microcontroller to ensure that the memory space is not already
occupied. If there is residual data there, the program will be copied on top of it, and will not function
as intended. The program function can be used for programming the microcontroller with the
specified hex file. This function will load the hex file and transmit it record by record until the
microcontroller program is complete. The start function is what triggers the microcontroller to begin
execution of the bootloaded program. Without a call to start, the microcontroller will remain in the
bootloading mode and new files can be loaded onto it. Calling start will cause the microcontroller to
jump to the start of the bootloaded program.

Palouse RoboSub Technical Documentation - https://robosub.eecs.wsu.edu/wiki/



Last update:

2016/09/13 12:47 legacy:2016:ee:bootloader:start https://robosub.eecs.wsu.edu/wiki/legacy/2016/ee/bootloader/start?rev=1473796065

From:
https://robosub.eecs.wsu.edu/wiki/ - Palouse RoboSub Technical Documentation

Permanent link: (2]
https://robosub.eecs.wsu.edu/wiki/legacy/2016/ee/bootloader/start?rev=1473796065

Last update: 2016/09/13 12:47

https://robosub.eecs.wsu.edu/wiki/ Printed on 2025/07/14 18:59


https://robosub.eecs.wsu.edu/wiki/
https://robosub.eecs.wsu.edu/wiki/legacy/2016/ee/bootloader/start?rev=1473796065

	Bootloader
	Framing of Transmissions
	Programming with the Bootloader


