
2024/05/18 01:49 1/2 AI

Palouse RoboSub Technical Documentation - https://robosub.eecs.wsu.edu/wiki/

AI

Main function of AI on the sub is to make decisions of what the sub should do based on given data
from topics like sensors, vision, data, etc. It is using hierarchical state machine, which allows it to
cover majority of cases it will face.

Overview

Current AI uses SMACH package that is in ROS. SMACH is a task-level architecture for rapidly creating
complex robot behavior. At its core, SMACH is a ROS-independent Python library to build hierarchical
state machines.

Advantages of SMACH are:

rapid development, ability to create complex state machines1.
ability to quickly change state machines without big code changes2.
explicitly define outcomes of every state thus covering most or all possible situations3.

Current AI

Our current AI was re-written using SMACH. There are several utility files such as:

gate_util.py - all states that are used by gate AI, they are generic.1.
util.py - contains utility functions for vision to filter labels, get N most probably, normalize2.
coordinates from vision, or wrap yaw. Note that vision will be changed in future, some of
the functions will no longer be useful.
basic_states.py - contains all of the states for roulette and dice AI.3.
control_wrapper.py - wrapper made to ease communication with control system, making it easy4.
to send basic commands such as dive, yaw, pitch, roll, move forward.
start_switch.py - every high-level state machine must have start_switch as their first state. It is5.
a state that waits for ros message to be sent over topic /start_switch to be true at least 3 times.
blind_movement.py - contains move_forward state that moves forward with x speed for y6.
number of seconds.
SubscribeState.py - a state that was made which accept also topic to which you want to7.
subscribe. It is also modified to pass over any input/output keys. In future this file will also
contain SynchronousSubscribeState that subscribes to two topics and moves once it
has two

There is a useful tool to see state machine and transitions of it called smach_viewer. To run it, run

rosrun smach_viewer smach_viewer.py

An example of what our AI looks like in smach_viewer is this screenshot below

http://wiki.ros.org/smach
http://wiki.ros.org/smach_viewer

Last update: 2018/02/24 13:53 cs:ai:start https://robosub.eecs.wsu.edu/wiki/cs/ai/start?rev=1519509183

https://robosub.eecs.wsu.edu/wiki/ Printed on 2024/05/18 01:49

Things to know when developing AI

When inheriting from SubscribeState instead of SmachState, you need to use
self.exit(“outcome”) instead of return “outcome”
Every python script that is going to run any state machine must have in its main function
these lines of code below.

while rospy.get_time() == 0:
 continue

Every time you create control_wrapper instance, you need to set depth value again.
If your state is using control wrapper to move, right before final outcome make sure to set
changed yaw/roll/pitch/forward to 0.
Control wrapper forward and strafe do not use relative same way as yaw and pitch, use instead
strafeLeftError() and forwardError()
Some current AI files use parameters from roscore server for different configuration of values.
They will crash if they do not load parameters. To load parameters run

rosparam load [param_file_name].yaml

Every time you restart roscore you need to reload parameters
Our vision detection requires undistortion to be running.

From:
https://robosub.eecs.wsu.edu/wiki/ - Palouse RoboSub Technical Documentation

Permanent link:
https://robosub.eecs.wsu.edu/wiki/cs/ai/start?rev=1519509183

Last update: 2018/02/24 13:53

https://robosub.eecs.wsu.edu/wiki/
https://robosub.eecs.wsu.edu/wiki/cs/ai/start?rev=1519509183

	AI
	Overview
	Current AI
	Things to know when developing AI

