2025/08/08 11:14 1/3 Trilateration Setup

Trilateration

Below is the math for calculating the location of the pinger in the water relative to our submarine. Because we know the absolute location of the pinger in the pool, we can calculate the sub's position in the pool.

Original derivation by Brian Moore.

Problem Setup

The derivation is based on the assumption that we have 4 hydrophones. One is considered the reference hydrophone, while the others are located along the x, y, and z axes.

```
$h_0$ is at location $(0,0,0)$
$h_x$ is at location $(\delta,0,0)$
$h_y$ is at location $(0,\epsilon,0)$
$h z$ is at location $(0,0,\zeta)$
```

We define the ping source is at location $$1_{\text{pinger}} = (x,y,z) $$

When a ping is received by the hydrophones, the hardware outputs delta-timestamps Δ_x , Δ_y , Δ_z , which corresponds to the difference in time between the ping was received by Δ_z , respectively.

Let's define p_0 as the absolute distance between h_0 and the pinger at location (x,y,z). \$\$ $p_0 = \sqrt{x^2 + y^2 + z^2}$ \$\$

These three time differences are multiplied by the speed of sound in water (c_s) to determine the difference in distance between the the reference hydrophone and pinger and each other hydrophone f_x,y,z . \$\$ \Delta x = \Delta t_x * c_s \\ \Delta y = \Delta t_y * c_s \\ \Delta z = \Delta t_z * c_s \\ \$\$ In other words, \$h_x\$ is \$\Delta x\$ meters farther from the pinger than \$h_0\$, and \$h_0\$ is \$p_0\$ meters from the pinger.

The final calculations for \$x\$, \$y\$, and \$z\$ will be in terms of \$\Delta x\$, \$\Delta y\$, and \$\Delta z\$

Let's define the distances from the other hydrophones to the pinger: $p_x = \sqrt{(x-\beta)^2 + y^2 + z^2} \ p_y = \sqrt{x^2 + (y-\beta)^2 + z^2} \ p_z = \sqrt{x^2 + y^2 + (z-\beta)^2} \$

```
Let's put this information together: \ \Delta x = p_0 - p_x = \sqrt{x^2 + y^2 + z^2} - \sqrt{(x-delta)^2 + y^2 + z^2} \ \\ \Delta y = p_0 - p_y = \sqrt{x^2 + y^2 + z^2} - \sqrt{x^2 + y^2} + \sqrt{z^2} \ \\ \Delta z = p_0 - p_z = \sqrt{x^2 + y^2 + z^2} - \sqrt{x^2 + y^2} + \sqrt{z^2} + \sqrt{z^2} \ \\ \Delta z = p_0 - p_z = \sqrt{x^2 + y^2} + \sqrt{z^2} + \sqrt{z^
```

Since we know Δx , Δx ,

Solving for Position

Using \$h_x\$ and its measurements, we will derive a formula for \$x\$. The same steps can be used for solving \$y\$ and \$z\$.

First, let's start with the final equation from the previous section: $\$ \Delta x = \sqrt{x^2 + y^2 + z^2} - \sqrt{(x-\delta)^2 + y^2 + z^2} \$\$ Also recall that \$\$ p_0 = \sqrt{x^2 + y^2 + z^2} \\ p_x = \sqrt{(x-\delta)^2 + y^2 + z^2} \$\$ Therefore \$\$ p_0^2 - p_x^2 = (x^2 + y^2 + z^2) - ((x-\delta)^2 + y^2 + z^2) \$\$ Simplifying, we get \$\$ p_0^2 - p_x^2 = x^2 - (x-\delta)^2 \\ = x^2 - (x^2 - 2\delta x + \delta^2) \\ = 2 \delta x - \delta^2 \$\$ Note that \$\$ p_0^2 - p_x^2 = (p_0+p_x)(p_0-p_x) \\ p_0-p_x = \frac{p_0^2 - p_x^2}{p_0+p_x} \$\$ Therefore \$\$ p_0-p_x = \frac{2 \delta x - \delta^2}{p_0+p_x} \$\$\$

Recall that $\$ \Delta $x = p \ 0 - p \ x \setminus p \ x = p \ 0 - Delta x $$$

Combining this with the previous equation, we can substitute Delta x for p_0-p_x on the left side and $p_0 - \beta x$ for p_x on the right side, which gives us $\beta \beta x = \frac{2 \cdot x }{2 \cdot 2}$ and $p_0 - \beta x$ on the right side, which gives us $\beta \beta x = \frac{2 \cdot x }{2 \cdot 2}$ for $p_x = \beta x$ on the right side, which gives us $\beta \beta x = \frac{2 \cdot x }{2 \cdot 2}$ for $\beta y = \beta x$ on the left side and $\beta y = \beta x$ for $\beta y = \beta x$ on the left side and $\beta y = \beta x$ for $\beta y = \beta x$

First, remember that \$\$ p_0 = \sqrt{x^2 + y^2 + z^2} \\ p_0^2 = x^2 + y^2 + z^2 \$\$ We can solve for \$p_0^2\$ using \$x^2\$, \$y^2\$, and \$z^2\$. Let's take our result for \$x\$, calculate \$x^2\$, and expand. \$\$ x = \frac{\Delta x (2p_0 - \Delta x) + \delta^2}{2 \delta} \\ x^2 = \left(\frac{\Delta x (2p_0 - \Delta x) + \delta^2}{2 \delta} \\ x^2 = \left(\frac{\Delta x (2p_0 - \Delta x) + \delta^2}{2 \delta} \\ x^2 = \frac{(\Delta x (2p_0 - \Delta x) + \delta^2)^2}{(2 \delta)^2} \\ x^2 = \frac{(\delta^2 \Delta x^2 + 2p_0\Delta x - \Delta x^2)^2}{(2 \delta)^2} \\ x^2 = \frac{(-\delta^2 \Delta x^2 - 2p_0\Delta x^3 + \Delta x^4) + (2p_0 \delta^2 \Delta x + \delta^2) \\ x^2 = \frac{4p_0^2 \Delta x^2 - 2p_0 \Delta x^3 + \Delta x^4 + 2p_0 \delta x^2 \Delta x - \delta^2 \Delta x^2)}{4 \delta^2} \\ x^2 = \frac{4p_0^2 \Delta x^2 + \delta^4}{4 \delta^2} \\ x^2 = \frac{p_0^2 (4\Delta x^2) + p_0}{4 \delta^2} \\ x^2 = p_0^2 \\ x^2 + \delta^2 \Delta x + \Delta x^2 + \delta^2 \\ x^2 = p_0^2 \\ x^2 + \delta^2 \\ x^2 + \delta^2 \\ x^2 = p_0^2 \\ x^2 + \delta^2 \\ x^2

We can derive a similar equation for \$y^2\$ and \$z^2\$ \$\$ x^2 = p_0^2 \left(\frac{\Delta^2 \cdot x}{\left(\frac{x^2 + \beta \cdot x^2 + \beta \cdot

2025/08/08 11:14 3/3 Trilateration Setup

Notice that each of these equations are in the form $$p_0^2 + p_0^2 + p_0^4 +$

Let's define the following variables: $\ a_x = \left(\frac{\beta x}{\left(\frac{\beta x}}{\left(\frac{\beta x}{\left(\frac{\beta x}{\left(\frac{\beta x}{\left(\frac{\beta x}{\left(\frac{\beta x}{\left(\frac{\beta x}{\left(\frac{\beta x}}{\left(\frac{\beta x}{\left(\frac{\beta x}{\left(\frac{\beta x}{\left(\frac{\beta x}{\left(\frac{\beta x}{\left(\frac{\beta x}{\left(\frac{\beta x}}{\left(\frac{\beta x}{\left(\frac{\beta x}{\left(\frac{\beta x}{\left(\frac{x}{\left(\frac{\beta x}{\left(\frac{\beta x}{\left(\frac{\left(\frac{\beta x}{\left(\frac{\beta x}{\left(\frac{\beta x}{\left(\frac{\beta x}{\left(\frac{\beta x}{\left(\frac{\beta x}{\left(\frac{\beta x}{\left(\frac{\gamma x}{\left(\frac{$

Therefore, we can rewrite x^2 , y^2 , and z^2 as $x^2 = p_0^2$ a_x + p_0 b_x + c_x \\ y^2 = p_0^2 a_y + p_0 b_y + c_y \\ z^2 = p_0^2 a_z + p_0 b_z + c_z \$

Recall that $p_0^2 = x^2 + y^z + z^2$ \$ Combining this with the above equations, we have \$\$ $p_0^2 = (p_0^2 a_x + p_0 b_x + c_x) + (p_0^2 a_y + p_0 b_y + c_y) + (p_0^2 a_z + p_0 b_z + c_z)$ \\ $p_0^2 = p_0^2(a_x + a_y + a_z) + p_0(b_x + b_y + b_z) + (c_x + c_y + c_z)$ \\ $p_0^2 = p_0^2(a_x + a_y + a_z) + (c_x + c_y + a_z) + (c_$

Letting $a = a_x + a_y + a_z$ (do the same for \$b\$ and \$c\$), we can simplify to \$\$ 0 = p_0^2 a + p 0 b + c \$\$

This is a simple quadratic equation we can use to solve for p_0 , which will give us 2 possible values. Now that we have p_0 , we can plug it in and solve for x, p_0 , and p_0 .

From:

https://robosub.eecs.wsu.edu/wiki/ - Palouse RoboSub Technical Documentation

Permanent link:

https://robosub.eecs.wsu.edu/wiki/cs/hydrophones/trilateration_setup/start?rev=1479260265

Last update: 2016/11/15 17:37