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Kalman Filter Algorithm

Note: This section is currently under revision.

This section covers the Kalman Filter Algorithm. First we'll cover the State Space format of modeling
and measuring a discrete-time dynamic system of estimated states, noisy inputs, and noisy
measurements. Second, we'll explore all the different pieces of information about our system
necessary to inform the algorithm. Third, the specific Kalman Filter Algorithm constructed based off of
those parameters. Finally, we'll use some example state spaces and measurements to see how well
we track.

Note: all images below have been created with simple Matlab Scripts. If seeing the code helps clarify
what's going on, the .m files can all be found under internal location cs:localization:kalman.

Section 1 - State Space Format

The State Space Format is a universally standardized format for dynamic systems in the signals and
controls community. In the continuous-time domain, the derivative of the state $\dot{x}(t)$ is a linear
function of $x(t)$. In the discrete-time domain, where we'll be operating, the next state $x[k+1]$ is a
linear function of the current state $x[k]$.

$$ X_{k+1} = AX_k + B(u_k + \sim\mathcal{N}(0,Q^2)) \\ Y_k = CX_k +
\sim\mathcal{N}(0,\sigma_m^2) $$

Vector $X_k$ is the State Vector which contains all states of the system at time-step $k$. These
include things like position, velocity, orientation, voltage, etc. Matrix $A$ is the Transmission Matrix,
which contains the dynamics of the system, and calculates the next state given the current state. $B$
is the input matrix, which describes the dynamics of inputs $u$.

Vector $Q$ is the Process Noise of the system, which is the combination of the variance of the inputs
$\sigma_u^2$ and an estimated degree of possible external forces $\sigma_{ext}^2$. $Q^2 =
\sigma_u^2 + \sigma_{ext}^2$ Random forces from bumping into walls, random currents in the
water, diver interaction, and other unpredictable perturbations. Put another way, $Q$ describes the
uncertainty involved when predicting into to future, even given perfect information about the present
State. Were there no external forces, perfect actuators, and a perfect initial state $x_0$, the system
state could be predicted perfectly into the future. This is obviously not the case in the real world,
hence the need to specify uncertainty in the model, and thus in predicting the future states.

Vector $Y_k$ is the measurement vector. It contains the values taken from the sensors. Matrix $C$ is
the Emission Matrix, which describes the linear function that relates the system state to the
measurement values. $\sigma_m$ is the noise vector which describes how noisy each individual
sensor measurement is.
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Section 2 - Kalman Filter Algorithm

The Kalman Filter is a two-stage process of prediction and measurement. First, based on the previous
state estimate $\hat{X}_{k-1}$ and inputs $u_{k-1}$, an initial current state estimate
$\hat{X}_{k'}$ is predicted. The confidence of the Previous Estimate is contained in the Covariance
Matrix $P$ From this estimate, a further estimate $\hat{Y}_k$ of what the sensors should be reading
given $\hat{X}_{k'}$ is calculated using the Emission Matrix $C$.

Second, the true, noisy measurements $Y_k$ are received and compared with the expected sensor
values $\hat{Y}_k$. A compromise between the noisy measurements and the expected measurement
is arrived at based upon the noise of the sensors $\sigma_m$ and the uncertainty of the
measurement predictions calculated from $P$. This compromise is encapsulated in a value $\hat{K}$
terms the 'Kalman Gain'. The official $\hat{X}_{k}$ is then calculated from the Emission Matrix $C$
and the compromise of sensor values. The estimate of our state for this time step is made, and the
process repeats to estimate the state $X_{k+1}$ at the next time step.

$$ \hat{X}_{k'} = A\hat{X}_{k-1} + Bu_{k-1}, \qquad P_{k'} = AP_{k-1}A' + Q^2 \\ \hat{K} =
P_{k'}H'/(HPH'+diag(\sigma_m^2)) \\ \hat{X}_k = \hat{X}_{k'} + \hat{K}(Y_k -
C\hat{X}_{k'}),\qquad P_k = (I_{n} - \hat{K}C)P_{k'} $$
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