2025/07/11 18:41 1/3 Vision

Vision

This page is stale and needs to be reviewed. It may be deleted or radically changed in
the near future.

Core Functionality

e The vision system on the sub is completely managed by the vision module. The current daemon
implementation allows for the vision module to be spawned independently or as a child of the
command module. Be sure to comment out communicator initialization code before running any
unit tests as the vision system will wait on the broker.

e Cameras are managed under an umbrella class named Capture which includes flycapture and
opencv cameras in one interface for convenience. Refer to the source code for specifics on how
to use the class as it is a bit hacky in order to get the build to work on OSX which does not have
flycap support.

e The vision system's main functionality is implemented through the creation and use of vision
processes. The VisionProcess class inherits all of the process elements from base class Process
and adds convenient vision specific functions for accessing camera framebuffers from shared
memory among other things.

» Vision processes utilize the FilterTree class for all basic image filtering operations. This allows a
dynamic insertion of new algorithm implementations into a vision process as desired. It also
allows the vision GUI tool to access and change parameters for the vision pipeline in each
process.

Writing a Filter

e The building blocks of the algorithms in the vision system utilize the filter. A filter can be
thought of as an operation that inputs and outputs an image. Filters are connected together in a
pipe and filter architecture with the FilterTree class.

e |n order to ensure proper serialization and deserialization at runtime and when tweaking
algorithms within the GUI, you need to make sure that OpenCV has all of its required wrapper
functions implemented. You can look at other filter implementations as an example on how it
should be structured. Refer to OpenCV's filestorage documentation for details.

Writing a Vision Process

* Vision processes should be thought of as standalone vision threads that accomplish a reusable
vision functionality for the sub to utilize at the Al level. They can utilize multiple cameras and
trees if desired, although one tree and one camera is most common.

e The first thing you should do is create a .hpp and .cpp file for the process you want to make.
Since settings file and tree loading are automatic, make sure you have an identically named
settings and tree file in the settings folder or the process will not load and will log the error.

Palouse RoboSub Technical Documentation - https://robosub.eecs.wsu.edu/wiki/

http://docs.opencv.org/doc/tutorials/core/file_input_output_with_xml_yml/file_input_output_with_xml_yml.html

Last update: 2017/01/14 22:37 cs:vision:start https://robosub.eecs.wsu.edu/wiki/cs/vision/start?rev=1484462232

e You must then include and inherit from vision process and implement each function as
necessary. You can look at other processes as examples on how it should look. NOTE: Since
filtering trees operate on filters and filters only return images as output, you will have to run
algorithms that output something other than an image outside of the tree. (Ex. Finding the
center of an object and returning it.) There are filters which output colored visuals for
algorithms such as hough lines, circles, and histograms, but they are mainly for the GUI and
visual verification. Runtime implementations should be outside of the filtertree in vision
processes for things such as this.

e To spawn the vision process you just created, you can send the appropriate spawn command to
the vision system along with the name of the process. Refer to the communicator
documentation for specifics on commands.

Cameras

See the Cameras page for more information on the details and use of the cameras.

Running the Vision System in ROS

roslaunch robosub vision.launch

To remap left and right camera topics, append
leftImage:=[newTopic]

and/or

rightImage:=[newTopic]

(bottom camera to be implemented) the topics for the simulator are /camera/(left|right|bottom).

To use simulator color parameters, append
simulated:=true

(This feature could change in the near future) After this, you will see the launch file spin up multiple
nodes. The vision system is running!

If you would like to see the images that the system is using, you can run the following command:
rosparam set /{vision node name}/processing/doImShow true

You will then see many windows open each with a unique image.

https://robosub.eecs.wsu.edu/wiki/ Printed on 2025/07/11 18:41

https://robosub.eecs.wsu.edu/wiki/cs/cameras/start

2025/07/11 18:41 3/3 Vision

From:
https://robosub.eecs.wsu.edu/wiki/ - Palouse RoboSub Technical Documentation

Permanent link: [x]
https://robosub.eecs.wsu.edu/wiki/cs/vision/start?rev=1484462232

Last update: 2017/01/14 22:37

Palouse RoboSub Technical Documentation - https://robosub.eecs.wsu.edu/wiki/

https://robosub.eecs.wsu.edu/wiki/
https://robosub.eecs.wsu.edu/wiki/cs/vision/start?rev=1484462232

	Vision
	Core Functionality
	Writing a Filter
	Writing a Vision Process
	Cameras
	Running the Vision System in ROS

